High-order Mass- and Energy-conserving SAV-Gauss Collocation Finite Element Methods for the Nonlinear Schrödinger Equation
نویسندگان
چکیده
A family of arbitrarily high-order fully discrete space-time finite element methods are proposed for the nonlinear Schrödinger equation based on scalar auxiliary variable formulation, which consists a Gauss collocation temporal discretization and spatial discretization. The proved to be well-posed conserving both mass energy at level. An error bound form $O(h^p+\tau^{k+1})$ in $L^\infty(0,T;H^1)$-norm is established, where $h$ $\tau$ denote mesh sizes, respectively, $(p,k)$ degree elements. Numerical experiments provided validate theoretical results convergence rates conservation properties. effectiveness preserving shape soliton wave also demonstrated by numerical results.
منابع مشابه
Energy-conserving methods for the nonlinear Schrödinger equation
In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) [14], by means of energyconserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many appl...
متن کاملHigh Order Stable Finite Difference Methods for the Schrödinger Equation
In this paper we extend the Summation–by–parts–simultaneous approximation term (SBP–SAT) technique to the Schrödinger equation. Stability estimates are derived and the accuracy of numerical approximations of interior order 2m, m = 1, 2, 3, are analyzed in the case of Dirichlet boundary conditions. We show that a boundary closure of the numerical approximations of order m lead to global accuracy...
متن کاملHigh–order Finite Element Methods for the Kuramoto–sivashinsky Equation
Résumé. Nous considérons l’équation de Kuramoto–Sivashinskymunie de conditions aux limites périodiques et d’une donnée initiale. Nous l’approchons en utilisant une méthode d’éléments finis de type Galerkin pour la discrétisation en espace, et un schéma de Runge–Kutta implicite pour la discrétisation en temps. Nous obtenons des estimations d’erreur optimales et discutons de la linéarisation de c...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite Element Collocation Methods for First Order Systems
Finite element methods and the associate collocation methods are considered for solving first-order hyperbolic systems, positive in the sense of Friedrichs. Applied in the case when the meshes are rectangle, those methods lead for example to the successfully used box scheme for the heat equation or D.S.N. scheme for the neutron transport equation. Generalizations of these methods are described ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2021
ISSN: ['0036-1429', '1095-7170']
DOI: https://doi.org/10.1137/20m1344998